Applying Apache Spark on Streaming Big Data for Health Status Prediction

نویسندگان

چکیده

Big data applications in healthcare have provided a variety of solutions to reduce costs, errors, and waste. This work aims develop real-time system based on big medical processing the cloud for prediction health issues. In proposed scalable system, parameters are sent Apache Spark extract attributes from apply machine learning algorithm. this way, risks can be predicted as alerts recommendations users providers. The also provide an effective recommendation by using streaming data, historical user’s profile, knowledge database make most appropriate sensor’s measurements. works tweeting status users. Their profile receives real time extracting via algorithm predict users’ status. Subsequently, their demand Therefore, algorithms applied stream care wearables with insights into These help providers individuals focus changes consequently improve quality life.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison on scalability for batch big data processing on Apache Spark and Apache Flink

*Correspondence: [email protected] 1Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology), University of Granada, Calle Periodista Daniel Saucedo Aranda, 18071 Granada, Spain Full list of author information is available at the end of the article Abstract The large amounts of data have created a need for new fram...

متن کامل

Static and Dynamic Big Data Partitioning on Apache Spark

Many of today’s large datasets are organized as a graph. Due to their size it is often infeasible to process these graphs using a single machine. Therefore, many software frameworks and tools have been proposed to process graph on top of distributed infrastructures. This software is often bundled with generic data decomposition strategies that are not optimised for specific algorithms. In this ...

متن کامل

Approximate Stream Analytics in Apache Flink and Apache Spark Streaming

Approximate computing aims for efficient execution of workflows where an approximate output is sufficient instead of the exact output. The idea behind approximate computing is to compute over a representative sample instead of the entire input dataset. Thus, approximate computing — based on the chosen sample size — can make a systematic trade-off between the output accuracy and computation effi...

متن کامل

Modeling and Simulating Apache Spark Streaming Applications

Stream processing systems are used to analyze big data streams with low latency. The performance in terms of response time and throughput is crucial to ensure all arriving data are processed in time. This depends on various factors such as the complexity of used algorithms and configurations of such distributed systems and applications. To ensure a desired system behavior, performance evaluatio...

متن کامل

An Apache Spark Implementation for Sentiment Analysis on Twitter Data

Sentiment Analysis on Twitter Data is a challenging problem due to the nature, diversity and volume of the data. In this work, we implement a system on Apache Spark, an open-source framework for programming with Big Data. The sentiment analysis tool is based on Machine Learning methodologies alongside with Natural Language Processing techniques and utilizes Apache Spark’s Machine learning libra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, materials & continua

سال: 2022

ISSN: ['1546-2218', '1546-2226']

DOI: https://doi.org/10.32604/cmc.2022.019458